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Abstract

Fractional Lévy motion (fLm) is the natural generalization of fractional
Brownian motion in the context of self-similar stochastic processes and stable
probability distributions. In this paper we give an explicit derivation of
the propagator of fLm by using path integral methods. The propagators of
Brownian motion and fractional Brownian motion are recovered as particular
cases. The fractional diffusion equation corresponding to fLm is also obtained.

PACS numbers: 02.50.Ey, 05.40.Jc, 05.40.Fb

1. Introduction

It is widely known that if ξ2(t) is a Gaussian, uncorrelated noise (i.e. white noise) the Langevin
(stochastic) equation

x(t) = x0 +
∫ t

0
ξ2(t

′) dt ′ (1)

describes ordinary Brownian motion. One of the properties of Brownian motion is that the
average squared displacement grows linearly with time, 〈(x(t) − x0)

2〉 ∝ t . However, many
transport processes in physical, biological and social systems exhibit anomalous diffusion
[1, 2]. That is, 〈(x(t)− x0)

2〉 ∝ t2H , with H �= 1/2, where H is called the Hurst exponent [3].
In the past, several authors have attempted to generalize equation (1) in order to accommodate
these anomalous processes. The anomalous behaviour may be associated with the existence
of spatiotemporal correlations that produce correlated increments dx(t) := x(t + dt) − x(t).
For this reason, the first proposed generalization had the form

x(t) = x0 +
1

�(H + 1/2)

∫ t

0
(t − t ′)H−1/2ξ2(t

′) dt ′, (2)
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known as fractional Brownian motion (fBm) [4], which has been extensively studied and
applied [5–8]. In equation (2) the noise ξ2(t) remains Gaussian and uncorrelated but, thanks
to the convolution with the power-law kernel, the increments dx(t) become correlated in a
way that yields the desired scaling of the mean squared displacement as well as other self-
similar properties. In particular, the average motion remains invariant under the transformation
(x, t) �→ (λHx, λt), generalizing the self-similarity of the original Brownian motion, which is
obviously recovered when H = 1/2 is set in equation (2). H is the self-similarity exponent of
the process. When rewritten in terms of the Riemann–Liouville fractional integral operators
(see the appendix) fBm reads

x(t) = x0 + 0D
−(H+1/2)
t ξ2. (3)

The corresponding propagator and diffusion equation of fBm have been derived in a number
of ways in the literature (see, for example, [9, 10]).

We will devote this paper to the Lévy generalization of fractional Brownian motion,
known as fractional Lévy motion (fLm) [11–14]. The Langevin equation defining the process
is

x(t) = x0 + 0D
−H+1/α−1
t ξα, (4)

where ξα(t) is time uncorrelated and distributed, for each t, according to a symmetric Lévy
distribution [15]. We recall here that symmetric Lévy distributions are the symmetric solutions
of the generalized central limit theorem and are parametrized by the stability index, α ∈ (0, 2],
and the scale factor, σ > 0. The characteristic function (i.e. the Fourier transform) of a
symmetric Lévy distribution Lα,σ (u) is

F[Lα,σ ](k) = exp(−σα|k|α). (5)

In particular, for α ∈ (0, 2), the Lévy distributions have algebraic tails,

Lα,σ (u) ∼ Cα

|u|α+1
, |u| → ∞. (6)

A Lévy distribution with α = 2 is a Gaussian,

L2,σ (u) = 1

2σ
√

π
exp

(
− u2

4σ 2

)
, (7)

and σ is related to the second moment, 〈u2〉 = 2σ 2.
The need for fLm originates in the observation of power-law (Lévy) statistics for the

displacements dx(t) in many physical systems of interest [1, 2], which is in contrast to the
Gaussian character of fBm. In equation (4), H is still the self-similarity exponent of
the process. It can be shown [15] that finiteness requirements for certain moments of x
restrict the admissible values of H to

H ∈
{(

0, 1
α

]
0 < α � 1(

0, 1
]

1 < α � 2.
(8)

Under these circumstances the sth moment of x, with 0 < s < α, behaves as 〈|x|s〉 ∝ t sH .
Note that fBm is recovered from equation (4) if α = 2. Also, the increments dx(t) of

the process are uncorrelated for H = 1/α. In this case, ordinary Lévy motion is obtained, of
which Brownian motion is a particular case (H = 1/α = 1/2). In the present work we will
compute in detail the propagator of fLm through path-integral techniques [16], now familiar
in both quantum field theory and statistical physics. Although the form of this propagator
has previously been derived in a more abstract way by using self-similarity and stability
arguments [11], the path-integral calculation offers a new insight which might help extend the
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range of applications of fLm and even tackle more complicated situations. Two of us recently
computed the propagator of fBm by path integral methods [17] taking advantage of the fact
that the measure can be written as the exponential of an action quadratic in the fields. As we
will see the fLm path-integral measure is not Gaussian in the fields (except for α = 2) and the
computation becomes quite more involved.

The rest of the paper is organized as follows. In section 2 we construct the appropriate
probability measure on the space of realizations of the noise for fLm. The propagator is defined
as a particular expectation value. Section 3 gives a detailed calculation of the propagator of
fLm in the path integral formalism. In section 4 the fractional diffusion equation satisfied
by the propagator of fLm is worked out. Section 5 contains the conclusions. The appendix
collects some basic definitions on fractional integrals and derivatives.

2. Construction of the path integral measure

Assume that the motion of a particle is defined by a stochastic differential equation. The
propagator G(xT , T |x0, 0) is, by definition, the probability of finding the particle at x = xT at
time t = T if initially, t = 0, it was located at x = x0. As mentioned above, the main objective
of this paper is to compute the propagator associated with equation (4) (we drop the subscript
α of ξ from now on) by means of path integrals. Consider trajectories x(t) : [0, T ] → R with
boundary conditions x(0) = x0 and x(T ) = xT . From equation (4) we immediately deduce
that the boundary conditions of x(t) are translated into the following constraint on ξ(t):

0D
−H+1/α−1
T ξ = xT − x0. (9)

The essential object in the path integral formalism is the probability measureP(ξ(t))Dξ(t)

on the space of realizations of the noise, i.e. on the space of maps ξ(t) : [0, T ] → R. Once it
is constructed, the propagator is defined as the following expectation value:

G(xT , T |x0, 0) =
∫

δ
(

0D
−H+1/α−1
T ξ − (xT − x0)

)
P(ξ(t))Dξ(t). (10)

In order to construct the measure associated with the Langevin equation (4) we will
discretize the time at N + 1 points tn := nε, n = 0, 1, . . . , N , with ε := T/N . The continuum
limit, N → ∞, will be taken eventually. Each path is discretized according to xn := x(tn).
The appropriate discretization of the noise is made by taking ξ(tn) = ε−1+1/αξn, where each
ξn is an independent random variable distributed according to a symmetric Lévy distribution
of index α. The factor ε−1+1/α ensures the correct time dependence of the finite moments of
x, 〈|x|s〉 ∝ t sH , 0 < s < α. Therefore, the probability measure is naturally defined as

P(ξ(t))Dξ(t) =
N∏

n=1

Lα,σ (ξn) dξn. (11)

Using the definition of the fractional integral, equation (A.1), the constraint (9) can be
written as

1

�(H − 1/α + 1)

∫ T

0
(T − τ)H−1/αξ(τ ) dτ = xT − x0. (12)

Discretizing as prescribed above:∫ T

0
(T − τ)H−1/αξ(τ ) dτ =

N∑
n=1

ξ(nε)

∫ nε

(n−1)ε

(T − τ)H−1/αdτ

= εH

H − 1/α + 1

N∑
n=1

ξn[(N − n + 1)H−1/α+1 − (N − n)H−1/α+1], (13)
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and we can easily solve for ξN in terms of ξn, n = 1, . . . , N − 1:

ξN = A −
N−1∑
n=1

Bnξn, (14)

with

A := �(H − 1/α + 2)

εH
(xT − x0),

Bn := (N − n + 1)H−1/α+1 − (N − n)H−1/α+1, n = 1, . . . , N − 1. (15)

Now, we are ready to write an explicit expression for the expectation value defining the
propagator (10). Namely,

G(xT , T |x0, 0) = lim
N→∞

f (T ,N)

∫
δ

(
ξN − A +

N−1∑
n=1

Bnξn

)
N∏

n=1

Lα,σ (ξn) dξn, (16)

where f (T ,N) is a normalization factor which will be determined at the end of the calculation.
Equivalently, integrating over ξN in equation (16):

G(xT , T |x0, 0) = lim
N→∞

f (T ,N)

∫
Lα,σ

(
A −

N−1∑
n=1

Bnξn

)
N−1∏
n=1

Lα,σ (ξn) dξn. (17)

It is instructive to show that the path integral of ordinary Brownian motion, usually
introduced in a different fashion, coincides with equation (16) when H = 1/α = 1/2. The
Langevin equation for Brownian motion is (recall equation (1))

ẋ(t) = ξ2(t). (18)

The propagator is customarily introduced as

G(xT , T |x0, 0) =
∫

δ(x(0) − x0) δ(x(T ) − xT ) exp

(
− 1

4σ 2

∫ T

0
ẋ(t)2dt

)
Dx(t), (19)

where the paths are weighted by the classical action of the free particle. Now, one can choose
the velocity, v(t) = ẋ(t), as the integration variable. The transformation is linear and the
Jacobian does not depend on the fields. The boundary conditions are simply translated into∫ T

0
v(t) dt = xT − x0. (20)

Therefore, we can write

G(xT , T |x0, 0) =
∫

δ

(∫ T

0
v(t) dt − (xT − x0)

)
exp

(
− 1

4σ 2

∫ T

0
v(t)2dt

)
Dv(t). (21)

If we discretize the paths as above we get

G(xT , T |x0, 0) = lim
N→∞

f (T ,N)

∫
δ

(
ε

N∑
n=1

vn − (xT − x0)

)
N∏

n=1

exp
(
− ε

4σ 2
v2

n

)
dvn, (22)

where f (T ,N) is a normalization factor. Finally, with a last change of variables, ξn := ε1/2vn

(redefine f (T ,N) as needed):

G(xT , T |x0, 0) = lim
N→∞

f (T ,N)

∫
δ

(
N∑

n=1

ξn − xT − x0

ε1/2

)
N∏

n=1

exp

(
− 1

4σ 2
ξ 2
n

)
dξn, (23)

which is exactly equation (16) for H = 1/α = 1/2 (recall equation (7)).
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3. Path integral computation of the propagator of fractional Lévy motion

The computation of (17) is performed by repeated use of the identity∫ ∞

−∞
Lα,σ (x)Lα,σ (y − λx) dx = (1 + λα)−1/αLα,σ

(
y

(1 + λα)1/α

)
, ∀ y ∈ R, (24)

where Lα,σ (x) is a symmetric Lévy distribution with index α and scale factor σ , and λ is a
positive real number. The proof is straightforward. Define L̄α,σ (x) := Lα,σ (λx). Then,∫ ∞

−∞
Lα,σ (x)Lα,σ (y − λx) dx = F−1[F[Lα,σ ]F[L̄α,σ ]](λ−1y). (25)

Using that F[L̄α,σ ](k) = |λ|−1F[Lα,σ ](k/λ) and F[Lα,σ ](k) = exp(−σα|k|α) we get:

F[Lα,σ ](k)F[L̄α,σ ](k) = |λ|−1 exp(−σα|(1 + |λ|−α)1/αk|α). (26)

And equation (24) follows easily.
Let us go back to equation (17). Using equation (24) we integrate out ξ1:

G(xT , T |x0, 0) = lim
N→∞

f (T ,N)

∫
Lα,σ

(
A − ∑N−1

n=2 Bnξn(
1 + Bα

1

)1/α

)
N−1∏
n=2

Lα,σ (ξn) dξn. (27)

Integration of ξ2 yields

G(xT , T |x0, 0) = lim
N→∞

f (T ,N)

∫
Lα,σ

⎛
⎝ A − ∑N−1

n=3 Bnξn(
1 + Bα

1

)1/α(
1 + Bα

2
1+Bα

1

)1/α

⎞
⎠ N−1∏

n=3

Lα,σ (ξn) dξn

= lim
N→∞

f (T ,N)

∫
Lα,σ

(
A − ∑N−1

n=3 Bnξn(
1 + Bα

1 + Bα
2

)1/α

)
N−1∏
n=3

Lα,σ (ξn

)
dξn. (28)

And after N − 1 integrations:

G(xT , T |x0, 0) = lim
N→∞

f (T ,N)Lα,σ

(
A(

1 +
∑N−1

n=1 Bα
n

)1/α

)
. (29)

It remains to compute

lim
N→∞

A(
1 +

∑N−1
n=1 Bα

n

)1/α
= lim

N→∞
�(H − 1/α + 2)

xT − x0

T H

×NH

[
1 +

N−1∑
n=1

((N − n + 1)H−1/α+1 − (N − n)H−1/α+1)α

]−1/α

. (30)

In the following, g(N) ∼ h(N) will mean that g(N)/h(N) → 1 when N → ∞. First
observe that
N−1∑
n=1

((N − n + 1)H−1/α+1 − (N − n)H−1/α+1)α ∼ (H − 1/α + 1)αNαH−1
N−1∑
n=1

(
1 − n

N

)αH−1
,

(31)

where we have used(
1 − n

N
+

1

N

)H−1/α+1

∼
(

1 − n

N

)H−1/α+1
+

H − 1/α + 1

N

(
1 − n

N

)H−1/α

. (32)
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Now, we note that
N−1∑
n=1

(
1 − n

N

)αH−1 1

N
∼

∫ 1−1/N

1/N

(1 − u)αH−1du = 1

αH

[(
1 − 1

N

)αH

− 1

NαH

]
, (33)

and we have almost reached our goal. Combining equations (31) and (33) we get
N−1∑
n=1

((N − n + 1)H−1/α+1 − (N − n)H−1/α+1)α ∼ (H − 1/α + 1)α

αH
NαH . (34)

Inserting this in equation (30):

lim
N→∞

A(
1 +

∑N−1
n=1 Bα

n

)1/α
= (αH)1/α�(H − 1/α + 1)

xT − x0

T H
. (35)

Hence,

G(xT , T |x0, 0) = f (T )Lα,σ

(
(αH)1/α�(H − 1/α + 1)

xT − x0

T H

)
, (36)

and f (T ) can be determined by normalization,
∫ ∞
−∞ G(xT , T |x0, 0) dxT = 1:

f (T ) = (αH)1/α�(H − 1/α + 1)

T H
, (37)

so that the final expression of the propagator is

G(xT , T |x0, 0) = (αH)1/α�(H − 1/α + 1)

T H
Lα,σ

(
(αH)1/α�(H − 1/α + 1)

xT − x0

T H

)
. (38)

Summarizing, we have deduced that the propagator of fLm is a Lévy distribution
depending on the combination x/tH , so that the average motion is self-similar with
exponent H.

4. Fractional diffusion equation

For the sake of completeness we derive in this section the fractional diffusion equation which
governs the time evolution of the propagator of fLm. Denote by Ĝ(k, t) the Fourier transform
of G(x, t |x0, 0) with respect to x. Using equation (38), the form of the characteristic function
of a Lévy distribution, and the properties of the Fourier transform under rescaling:

Ĝ(k, t) = exp

(
− σαtαH

(αH)�
α
(H − 1/α + 1)

|k|α
)

. (39)

Differentiating with respect to t:

∂

∂t
Ĝ(k, t) = − σαtαH−1

�
α
(H − 1/α + 1)

|k|αĜ(k, t). (40)

Fourier inverting, recalling the definition (A.3) and the identity

F
[

∂αf

∂|x|α
]

(k) = −|k|αf (k), (41)

we find:
∂

∂t
G(x, t) = σαtαH−1

�
α
(H − 1/α + 1)

∂α

∂|x|α G(x, t). (42)

Therefore, the propagator of fLm satisfies a space-fractional diffusion equation with time-
dependent diffusivity. Equation (42) was recently derived by different methods in [18].

6



J. Phys. A: Math. Theor. 42 (2009) 055003 I Calvo et al

The equation for the propagator of fBm (appeared in [10]) is obtained from equation (42)
in the particular case α = 2:

∂

∂t
G(x, t) = σ 2t2H−1

�
2
(H + 1/2)

∂2

∂x2
G(x, t), (43)

which is a diffusion equation with time-dependent diffusivity.
Finally, if H = 1/α = 1/2 we retrieve the standard diffusion equation associated with

ordinary Brownian motion,
∂

∂t
G(x, t) = σ 2 ∂2

∂x2
G(x, t). (44)

5. Conclusions

The Langevin equation defining fLm consists of two main ingredients: a time-uncorrelated
stochastic noise distributed according to a Lévy distribution and a fractional integral operator
which generates the time correlations. In this paper, we have derived the propagator of
fLm (which was deduced in [11] by using self-similarity arguments) through path integral
techniques. That is, we have explicitly constructed a probability measure on the set of
realizations of the noise and precisely defined the propagator as an average over this measure
space. The computation of the propagator has been performed by discretizing the paths and
carefully taking the continuum limit at the end. The fractional diffusion equation associated
with fLm has also been derived. We hope that the heuristic power of the path integral formalism
will provide new insight into the calculation and help address more complicated cases.
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Appendix. Riemann–Liouville fractional integral and differential operators

The books [19, 20] are excellent introductory texts to fractional calculus containing, in
particular, the following definitions.

Assume that f : R → R is a sufficiently well-behaved function. The Riemann–Liouville
fractional integral operators of order α are defined as

aD
−α
x f := 1

�(α)

∫ x

a

(x − x ′)α−1f (x ′) dx ′,

bD−α
x f := 1

�(α)

∫ b

x

(x ′ − x)α−1f (x ′) dx ′.
(A.1)

As for the Riemann–Liouville fractional differential operators of order α, the definition is

aD
α
x f := 1

�(m − α)

dm

dxm

∫ x

a

f (x ′)
(x − x ′)α−m+1

dx ′,

bDα
x f := (−1)m

�(m − α)

dm

dxm

∫ b

x

f (x ′)
(x ′ − x)α−m+1

dx ′,
(A.2)

where m is the integer number verifying m − 1 � α < m.
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Finally, the Riesz fractional differential operator is defined as the symmetric combination

∂α

∂|x|α := −1

2 cos(πα/2)

(
−∞Dα

x + ∞Dα
x

)
. (A.3)
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